ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ФИЗИКЕ В ИНЖЕНЕРНЫХ НАУКАХ

ВВЕДЕНИЕ

Разложение вектора на составляющие. Проекция вектора на ось. Сложение и вычитание векторов.

1. МЕХАНИКА

1.1. Кинематика движения материальной точки

Основные понятия и определения. Система отсчета. Радиус вектор. Закон движения. Траектория. Путь и перемещение. Скорость. Ускорение.

Относительность движения. Закон сложения скоростей.

Равномерное движение.

Равноускоренное движение. Свободное падение тел. Движение тела, брошенного вертикально вверх, горизонтально, под углом к горизонту.

Равномерное движение точки по окружности. Линейная и угловая скорости. Период и частота вращения. Ускорение при равномерном движении точки по окружности. Ускорение при неравномерном движении точки по окружности.

1.2. Динамика

Инерциальные системы отсчета. Первый закон Ньютона.

Инертность и масса тел. Сила. Второй закон Ньютона.

Третий закон Ньютона.

Сила упругости. Закон Гука.

Закон Всемирного тяготения. Гравитационная постоянная. Сила тяжести. Ускорение свободного падения.

Вес тела. Вес тела, движущегося с ускорением. Невесомость. Вес тела на экваторе и на полюсе планеты.

Сила трения. Трение покоя и скольжения. Сила сопротивления среды.

Движение тела по наклонной плоскости. Криволинейное движение тела.

Совместное движение нескольких тел.

1.3 Равновесие твердых тел и жидкостей

Условие равновесия материальной точки.

Момент силы. Условия равновесия твердого тела. Центр тяжести твердого тела.

Давление. Закон Паскаля. Давление в жидкости при действии на нее силы тяжести. Сообщающиеся сосуды. Принцип действия гидравлического пресса.

Атмосферное давление. Опыт Торричелли. Нормальное атмосферное давление.

Закон Архимеда. Условие плавания тел.

1.4. Законы сохранения в механике

Импульс тела и системы тел. Сила и импульс.

Закон сохранения импульса. Упругое взаимодействие. Неупругое взаимодействие.

Центр масс. Теорема о движении центра масс.

Работа силы. Мощность. Работа силы упругости. Работа силы тяжести.

Энергия. Кинетическая и потенциальная энергии. Механическая энергия.

Закон сохранения механической энергии. Упругое взаимодействие тел.

Силы трения и механическая энергия. Понятие о внутренней энергии. Закон сохранения полной энергии для замкнутых систем. Неупругое взаимодействие тел.

1.5. Механические колебания

Основные понятия и определения колебательных процессов. Свободные и вынужденные колебания. Периодические колебания. Период и частота колебания.

Гармонические колебания. Скорость и ускорение при гармонических колебаниях.

Колебания груза на пружине.

Математический маятник.

2. МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕПЛОВЫЕ ЯВЛЕНИЯ

2.1. Основы молекулярно-кинетической теории. Уравнение состояния и законы идеального газа

Основные положения молекулярно-кинетической теории. Масса и размеры молекул. Моль вещества. Число Авогадро.

Идеальный газ в молекулярно-кинетической теории. Основное уравнение молекулярно-кинетической теории идеального газа.

Температура и тепловое равновесие. Абсолютная температура. Температура — мера средней кинетической энергии молекул. Постоянная Больцмана.

Понятие об уравнении состояния. Уравнение Менделеева-Клапейрона — уравнение состояния идеального газа. Универсальная газовая постоянная. Закон Дальтона.

Газовые законы. Изохорный процесс. Закон Шарля. Изобарный процесс. Закон Гей-Люссака. Изотермический процесс. Закон Бойля-Мариотта. Графики процессов на диаграммах PV, PT и VT.

2.2. Основы термодинамики

Внутренняя энергия. Внутренняя энергия идеального газа.

Работа в термодинамике. Работа газа при расширении и сжатии.

Теплообмен, Количество теплоты, Теплоемкость,

Первый закон термодинамики. Применение первого закона термодинамики к изо-процессам идеального газа. Адиабатический процесс.

Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) теплового двигателя. Идеальный тепловой двигатель. Второй закон термодинамики.

2.3. Изменение агрегатного состояния вещества

Плавление и кристаллизация. Удельная теплота плавления.

Парообразование и конденсация. Испарение. Насыщенный пар. Зависимость давления насыщенного пара от температуры. Кипение. Удельная теплота парообразования. Изотермическое сжатие пара. Понятие о критической температуре.

Влажность воздуха. Абсолютная и относительная влажности.

3. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

3.1. Электростатика

Электрический заряд и электрическое поле. Закон сохранения электрического заряда.

Закон Кулона. Напряженность электростатического поля. Поле точечного заряда. Принцип суперпозиции электростатических полей. Поле сферы и бесконечной плоскости, равномерно заряженных по поверхности. Поле шара, равномерно заряженного по объему.

Потенциал электростатического поля. Разность потенциалов. Связь разности потенциалов с напряженностью для однородного поля. Потенциал поля точечного заряда. Принцип суперпозиции для потенциалов. Силовые линии и эквипотенциальные поверхности.

Проводники и диэлектрики в электростатическом поле. Взаимодействие точечных зарядов в диэлектрике. Диэлектрическая проницаемость.

Электроемкость. Конденсаторы. Параллельное и последовательное соединение конденсаторов. Энергия заряженного конденсатора. Объемная плотность энергии электрического поля.

Движение заряженных частиц в электрическом поле. Потенциальная энергия заряда в электростатическом поле.

3.2. Электрический ток

Электрический ток. Плотность тока и сила тока. Условия, необходимые для существования электрического тока.

Закон Ома для участка цепи. Сопротивление. Последовательное и параллельное соединение проводников. Работа и мощность электрического тока. Тепловое действие электрического тока. Закон Джоуля-Ленца.

Сторонние силы. Электродвижущая сила источника тока. Закон Ома для полной цепи.

Правила Кирхгофа.

Электролиз. Законы Фарадея для электролиза.

3.3. Магнитное поле. Электромагнитная индукция

Магнитное поле. Индукция магнитного поля.

Действие магнитного поля на проводник с током и движущийся заряд. Сила Ампера. Сила Лоренца. Движение заряженных частиц в магнитном поле.

Магнитное поле бесконечного прямолинейного проводника с током. Закон Био и Савара. Линии индукции магнитного поля. Взаимодействие токов.

Явление электромагнитной индукции. Закон Фарадея для электромагнитной индукции. Правило Ленца.

Самоиндукция. Индуктивность. Энергия магнитного поля катушки с током. Объемная плотность энергии магнитного поля.

3.4. Электромагнитные колебания. Переменный электрический ток

Колебательный контур. Свободные незатухающие колебания в колебательном контуре.

Переменный электрический ток. Действующее значение напряжения и силы тока.

Конденсатор и катушка индуктивности в цепи переменного тока. Резонанс в цепи переменного тока. Преобразование переменного тока. Трансформатор.

4. ОПТИКА

4.1. Геометрическая оптика

Законы геометрической оптики. Закон прямолинейного распространения света. Закон независимости световых лучей. Законы отражения и преломления света. Явление полного отражения.

Плоские и сферические зеркала. Построение изображений в зеркалах. Примеры.

Преломление света на плоской и сферической поверхностях. Плоскопараллельная пластинка. Призма.

Линзы. Собирающие и рассеивающие линзы. Фокусное расстояние и оптическая сила линзы. Построение изображений в линзах. Формула тонкой линзы.

4.2. Элементы волновой оптики

Основные понятия и определения волновых процессов. Волны. Поперечные и продольные волны. Скорость волны. Плоская монохроматическая волна. Длина волны. Связь скорости распространения с длиной волны и частотой.

Законы отражения. Преломление волн. Законы преломления.

Интерференция и дифракция волн. Принцип суперпозиции и интерференция волн. Принцип Гюйгенса и дифракция волн.

Свет как электромагнитная волна. Скорость света. Интерференция и дифракция света. Дифракционная решетка.

4.3. Элементы квантовой оптики

Корпускулярно-волновой дуализм. Гипотеза световых квантов. Фотоны. Энергия и импульс фотона. Давление света.

Фотоэффект. Законы фотоэффекта (законы Столетова). Уравнение Эйнштейна для фотоэффекта. Красная граница фотоэффекта.

5. ЭЛЕМЕНТЫ АТОМНОЙ И ЯДЕРНОЙ ФИЗИКИ.

5.1. Атомная физика

Строение атома. Опыты Резерфорда.

Постулаты Бора. Модель атома водорода по Бору.

5.2. Физика атомного ядра

Радиоактивные превращения. Закон радиоактивного распада. Период полураспада.

Строение атомного ядра. Изотопы. Энергия связи атомных ядер.

Ядерные и термоядерные реакции. Выделение энергии при делении и синтезе атомных ядер.